Стальные уголки представляют собой один из наиболее востребованных типов фасонного проката. В зависимости от метода изготовления исходных материалов они делятся на горячекатаные и гнутые. В качестве исходных материалов используются различные виды стали, такие как углеродистые стали обыкновенного качества Ст3 пс/сп (для обыденных задач) и качественные низколегированные стали, такие как 09Г2С, 17Г1С, 10ХСНД, 15 ХСНД (для применения в условиях повышенных нагрузок, при сложных температурных условиях и в контакте с агрессивными средами).
Пример расчета уголка, швеллера и двутавра на прогиб и изгиб
На данной странице представлен пример расчета швеллера. Что касается расчетов уголка и двутавра, то они производится аналогичным образом. Другими словами, данный пример является полезным для следующих калькуляторов:
В примере будут описаны несколько действий, которые должны выполняться последовательно.
Дано.
Район строительства — Нижний Новгород.
Расчетная схема — Тип 1.
Необходимо подобрать швеллер, который будет воспринимать нагрузку от снега.
Действие 1. Внесение исходных данных.
Расчетная нагрузка = 240 кг/м2 — так как город Н.Новгород находится в IV снеговом районе (в соответствии с табл. 10.1 и картой 1 СП 20.13330.2011 «Нагрузки и воздействия» [1]).
Fmax = 1/200 — так как пролет балки равен 5 м (пункт 2 табл. E1 [1]).
Расположение — по оси Х (швеллер воспринимает нагрузку вертикально).
Расчетное сопротивление Ry=210 МПа — берется как наихудший вариант для стали.
Действие 2. Выбор предполагающих номеров профилей.
Предположим, что мы рассматриваем два вида профилей: с параллельными гранями и с уклоном полок. Поэтому для первоначального расчета выбираются швеллеры размером 8П И 8У.
После произведенного расчета видно, что в графе «Запас» в том и другом случае стоят отрицательные значения. Это означает, что выбранные швеллеры не способны воспринимать приложенную на них нагрузку. Следовательно, необходимо выбирать профили большего размера.
Действие 3. Корректирующий расчет.
При увеличении профилей до 10П и 10У ситуация аналогичная. Но после того, как профили были увеличены до 12П и 12У в графах «Запас» появились положительные значения. Следовательно, в качестве балки перекрытия можно принять тот или иной профиль (имеется в виду 12П или 12У).
svoydomtoday.ru
Расчет отгибов при действии поперечных сил.
Расчет наклонных сечений при комбинированном поперечном армировании (отгибы и хомуты). При армировании балок каркасами отогнутые стержни (отгибы) применяют сравнительно редко. Условие прочности элемента при комбинированном поперечном армировании было дано выше (формула 4.37):
Таким образом, отгибы воспринимают избыток поперечной силы Q. Расчет по поперечной силе следует производить для наклонных сечений, проходящих через следующие точки: 1 — грань опоры, 2 — начало расположенных в растянутой зоне отгибов; 3 точка изменения шага хомутов (рис. 4.8). В соответствии с этим величина Q в формуле (4.49) равна, для первой от опоры плоскости отгибов — поперечной силе Q у грани опоры; для второй от опоры плоскости отгибов — значению поперечной силы Q у нижней точки первой плоскости отгибов и т.д.
Конструктивные требования при армировании изгибаемых элементов отгибами и хомутами заключаются в следующем. Отгибы стержней осуществляют по дуге радиуса не менее 10 d, а на концах отогнутых стержней следует устраивать прямые участки, принимаемые не менее 20 d в растянутой и 10 d в сжатой зоне. Начало отгиба в растянутой зоне должно отстоять от нормального сечения, в котором отгибаемый стержень используется по расчету, не менее чем на 0,5 h0, а конец отгиба должен быть расположен не ближе того нормального сечения, в котором отгиб не требуется по расчету. Все приведенные выше формулы справедливы для расчета как прямоугольных, так и тавровых сечений.
Перед тем, как приступать к расчету, необходимо выбрать тип поперечного армирования (отгибы, наклонные пучки, преднапряженные хомуты, хомуты без преднапряжения), назначить диаметры арматуры, состав наклонных пучков и размещение поперечной арматуры. В простейших случаях необходимая интенсивность поперечного армирования может быть получена по расчету (см. формулы 17.10 и 17.11). В сложных случаях приходится задаваться поперечным армированием на основании предшествующего опыта, уточняя его по результатам расчета.
После конструирования поперечной арматуры делают расчет на прочность по наклонным сечениям
.
При нагрузках, близких к предельным, в элементах появляются наклонные трещины в бетоне, вызываемые главными растягивающими напряжениями. При повышении нагрузок может произойти разрушение элемента по сечениям, совпадающим с этими трещинами. Достаточная гарантия против разрушения обеспечивается расчетом элемента на прочность по наклонным сечениям.
В расчетной модели рассматриваемого вида разрушения элемента предполагается, что вся растянутая зона бетона пересечена наклонной трещиной. Вся арматура, пересекающая трещину, работает при напряжениях, равных расчетным сопротивлениям, что соответствует предположению, что в ней появилась текучесть. Учитывают силу сопротивления сжатой зоны бетона срезу Qб.
Отбросив отсеченную часть балки, можно составить уравнения статики. При этом сумма проекций внешних сил на ось, нормальную к оси балки, численно равна поперечной силе в поперечном сечении, совпадающем со сжатой зоной, а момент внешних сил относительно центра сжатой зоны численно равен изгибающему моменту в том же поперечном сечении. При расчете определяют независимо друг от друга предельные величины поперечной силы и изгибающего момента. Усилия в наклонных и вертикальных элементах арматуры входят в оба уравнения; условно расчет ведут раздельно для поперечной силы и изгибающего момента, но к расчетным сопротивлениям наклонной и поперечной арматуры вводят понижающие коэффициенты условий работы.
Все вышеперечисленные условности и допущения обоснованы обширными экспериментальными исследованиями.
Предельную поперечную силу определяют (рис. 17.12) по формуле
где Ra, Rн, Rax, Rн.х – расчетные сопротивления металла соответственно для наклонных стержней ненапрягаемой арматуры, элементов напрягаемой арматуры, ненапрягаемых и преднапряжениых хомутов, ∑Fa0sin αi, ∑Fн0sin αi – суммы произведений площадей наклонных ненапрягаемых и напряженных элементов арматуры на синусы углов наклона их к горизонту; ∑Faх, ∑Fн.х – суммы площадей ненапрягаемых и напряженных хомутов, пересеченных трещинами; m, mн – коэффициенты условий работы; m = 0,8; mн = 0,8 для стержневой и mн = 0,7 для проволочной арматуры; Qб – сопротивление срезу сжатой зоны бетона;
но не более 0,3Q, где Rp – расчетное сопротивление бетона растяжению; b – наименьшая толщина элемента, пересеченная трещиной (для тавровых сечений – толщина стенки); h0 – рабочая высота сечения; c – длина горизонтальной проекции трещины.
Рис. 17.12 – Схема к расчету на прочность наклонного сечения по поперечной силе
Формула (17.7) получена из условия равенства нулю проекций на вертикальную ось всех сил, приложенных к левой части элемента. Первый член отражает сопротивление наклонных ненапрягаемых стержней (например, отгибов); второй член – то же, для напрягаемых наклонных элементов арматуры; третий и четвертый члены – сопротивление ненапрягаемых и преднапряженных хомутов; пятый член – сопротивление срезу сжатой зоны бетона. Формула приведена в общем виде; в реальной конструкции некоторые виды арматуры и соответственно некоторые члены уравнения могут отсутствовать, в частности на рисунке нет отгибов ненапрягаемой арматуры (Fа0 = 0).
Условие прочности наклонного сечения по поперечной силе
Здесь Q – расчетная поперечная сила, определяемая для поперечного сечения, совпадающего с концом наклонной трещины в сжатой зоне.
Расчёт на обрыв.
Отрыв возникает, когда нагрузка приложена к нижней грани элемента или в пределах высоты его сечения. Например, отрыв части бетона балки может вызвать нагрузка от оборудования, подвешенного к ней через отверстия в стенке; отрыв бетона в главной балке монолитного ребристого перекрытия могут вызвать опорные реакции второстепенных балок. Механизм отрыва очень похож на механизм продавливания – разрушение бетона тоже происходит от среза и тоже под углом 450.
Однако в расчете на отрыв сопротивление бетона срезу по поверхности отрыва учитывают косвенно, корректируя величину отрывающей силы F. Ее сравнивают с несущей способностью дополнительной поперечной арматуры, устанавливаемой в обязательном порядке по длине зоны отрыва a (рис. 74). Тогда условие прочности имеет вид: F(1– hs/h0) ≤ SRswAsw, где SRswAsw – сумма поперечных усилий, воспринимаемых хомутами (поперечными стержнями) по длине зоны a. Разумеется, хомуты должны быть надежно заанкерены по обе стороны от поверхности отрыва.
Расчет стального уголка | Характеристики гнутого металлического уголка
Стальные уголки представляют собой один из наиболее востребованных типов фасонного проката. В зависимости от метода изготовления исходных материалов они делятся на горячекатаные и гнутые. В качестве исходных материалов используются различные виды стали, такие как углеродистые стали обыкновенного качества Ст3 пс/сп (для обыденных задач) и качественные низколегированные стали, такие как 09Г2С, 17Г1С, 10ХСНД, 15 ХСНД (для применения в условиях повышенных нагрузок, при сложных температурных условиях и в контакте с агрессивными средами).
Характеристики горячекатаного металлического уголка
Равнополочный горячекатаный стальной уголок производят в соответствии с ГОСТом 8509-93 из квадрата, являющегося исходной заготовкой. Наиболее массово используется угловой профиль обычной точности «В», для ответственных конструкций – продукция высокой точности «А». Размеры полки, согласно стандарту, – от 20 до 250 мм.
Сортамент неравнополочных уголков определяется ГОСТом 8510-86. Наименьшие размеры полок – 16 и 25 мм, максимальные – 125 и 200 мм. Эта продукция применяется при создании конструкций сложной формы, например, арок.
Для горячекатаной продукции характерна высокая прочность, что позволяет использовать ее в конструкциях, предназначенных для работы в условиях высоких нагрузок. В производстве углового профиля массово используют углеродистую сталь обыкновенного качества и качественную. Изделия из низколегированных сталей применяют для создания конструкций ответственного назначения корпусов, рам и других деталей сельскохозяйственной техники, локомотивов, вагонов, крупногабаритных строительных машин и механизмов. Изделия из такого профиля могут сохранять рабочие характеристики в широком температурном интервале – от -70° до +70°C, при серьезных суточных и сезонных температурных перепадах.
Горячекатаную продукцию поставляют партиями, размер которых обычно не превышает 70 тонн. Каждая партия имеет сертификат соответствия требованиям нормативной документации.
Расчет количества стального равнополочного уголка
При определении массы партии проката углового профиля необходимо знать массу погонного метра, которую вы можете определить по таблице, и общий метраж.
Таблица весов равнополочного стального горячекатаного уголка наиболее распространенных размеров
Размер полки, мм | Толщина стенки, мм | Масса 1 м, кг | Размер полки, мм | Толщина стенки, мм | Масса 1 м, кг | Размер полки, мм | Толщина стенки, мм | Масса 1 м, кг |
20 | 3 | 0,89 | 35 | 4 | 2,1 | 50 | 4 | 3,05 |
4 | 1,15 | 5 | 2,58 | 5 | 3,77 | |||
25 | 3 | 1,12 | 40 | 3 | 1,85 | 6 | 4,47 | |
4 | 1,46 | 4 | 2,42 | 63 | 4 | 3,9 | ||
30 | 3 | 1,36 | 5 | 2,98 | 5 | 4,81 | ||
4 | 1,78 | 45 | 3 | 2,08 | 6 | 5,72 | ||
32 | 3 | 1,46 | 4 | 2,73 | 70 | 5 | 5,38 | |
4 | 1,91 | 5 | 3,37 | 6 | 6,39 | |||
35 | 3 | 1,6 | 50 | 3 | 2,32 | 7 | 7,39 |
Характеристики гнутого стального уголка
Эту продукцию получают на профилегибочных станках из горяче- или холоднокатаного листового проката. Процесс проходит без нагрева. В холодногнутой продукции сохраняются остаточные напряжения, ухудшающие рабочие свойства. Для устранения остаточных явлений применяют отпуск – нагрев до определенной температуры с последующим медленным охлаждением. Визуальное отличие двух видов продукции: горячекатаный уголок имеет четкий прямой внешний угол, для гнутого характерен скругленный угол.
Размеры металлического равнополочного гнутого уголка определяются ГОСТом 19771-93, неравнополочного – ГОСТом 19772-93. Эта продукция имеет меньшую прочность, по сравнению с горячекатаной. Применяется в мебельном производстве, в качестве ребер жесткости, вспомогательных элементов при креплении конструкций, для изготовления деталей машин и механизмов.
metallz.ru
Расчет квадратной трубы на прогиб и изгиб
Замкнутые профили, какими являются квадратные, прямоугольные и круглые трубы, — это вариант для тех, у кого нет возможности использовать деревянные конструкции, но есть желание предать будущему сооружению хорошую эстетичность. Например, каркас козырька, сваренный из квадратных труб, выглядит более эстетично, чем тот же козырек, сваренный из уголков.
На данной странице Вам представлен калькулятор способный подбирать сечение квадратной трубы по прочности и деформациям. Другими словами, с помощью данного калькулятора Вы можете произвести расчет квадратной трубы на прогиб и изгиб по ГОСТ 30245-2003 «Профили стальные гнутые замкнутые сварные квадратные для строительных конструкций».
Рассчитать квадратную трубу можно для следующих расчетных схем:
- Тип 1 — балка с одним пролетом с приложенной на нее равномерно распределенной нагрузкой.
- Тип 2 — жестко защемленная консоль с равномерно распределенной нагрузкой.
- Тип 3 — балка лежащая на двух опорах с выведенной консолью с одной стороны.
- Тип 4 — однопролетная шарнирно опертая балка с приложенной на нее сосредоточенной нагрузкой.
- Тип 5 — то же самое, что и тип 4, только с двумя сосредоточенными нагрузками.
- Тип 6 — консоль с жестким защемлением с приложенной на нее сосредоточенной нагрузкой.
Калькуляторы по теме:
Инструкция к калькулятору
Исходные данные
Расчетная схема:
Длина пролета (L) — пролет через который переброшена балка или длина консоли.
Расстояния (A и B) — расстояния от опор до мест приложения нагрузок. Для 3 схемы А равна длине консоли балки, опирающейся на 2 опоры.
Нормативная и расчетная нагрузки — нагрузки, на которые рассчитывается квадратная труба. Рассчитать их можно с помощью следующих материалов:
Fmax — максимально допустимый прогиб, подбираемой по таблице E.1 СНиПа «Нагрузки и воздействия», в зависимости от вида конструкции. Некоторые значения этого показателя приведены в таблице 1.
Таблица 1. Максимальный прогиб для некоторых конструкций согласно СНиП.
Вид балки | Длина пролета | Требования | Fmax |
Балки перекрытий, покрытий, крыши | L ≤ 1 м | Эстетико-психологические, то есть такие, при которых прогиб балки не будет «бросаться в глаза» | 1/120 (1/60) |
L = 3 м | 1/150 (1/75) | ||
L = 6 м | 1/200 (1/100) | ||
L = 12 м | 1/250 (1/125) | ||
Балки покрытий и перекрытий при наличии на них элементов, подверженных растрескиванию (стяжек, полов, перегородок) | любая | Конструктивные | 1/150 (1/75) |
Перемычки | любая | Конструктивные | |
Примечания:
1. Без скобок Fmax указан для пролета, в скобках — для консоли. 2. В случае промежуточных значений длины пролета L максимальный прогиб Fmax находится по линейной интерполяции. |
Количество труб — обычно указывается одна балка, но если есть желание ее усилить и положить рядом еще одну такую же балку, то следует вы
svoydomtoday.ru
Как согнуть уголок в кольцо своими руками
Для этого лучше всего воспользоваться горячим способом обработки металла. А вот добиться заданного радиуса можно только с помощью заранее приготовленного шаблона. Предварительно нагреваем металл и начинаем равномерно огибать шаблон, при этом горизонтальную полку необходимо править во время всего процесса сгибания с помощью кувалды или молота, в противном случае полки не сохранят изначальный угол в 90 градусов между собой.
Нагревать металл необходимо до половины значения температуры его плавления, так, к примеру, алюминиевый уголок придется нагреть как минимум до 250⁰ С, а стальной профиль — до 600⁰ С. Для этого вам понадобится горелка на природном газе или бензиновая паяльная лампа, а лучше всего воспользоваться сварочным ацетиленовым резаком, если уголок большого размера.
С помощью болгарки и сварочного аппарата тоже можно согнуть стальной уголок в кольцо, но для этого необходимо произвести достаточно точные расчеты, разметить и расчертить удаляемые сектора, согнуть и заварить швы. К сожалению, как бы вы ни старались, в этом случае получиться круг в виде округлого многогранника.
ПОСМОТРЕТЬ Гибочные станки на AliExpress →
Расчет прямоугольной трубы на прогиб и изгиб
Прямоугольная труба — это металлопрокат замкнутого профиля. Применяется он обычно в качестве распорок (т.е. работает только на сжатие и растяжение) в каркасных сооружениях или поясов ферм. Но бывают случаи, когда прямоугольную трубу закладывают и в перекрытия жилых зданий или изготавливают из нее, например, козырек над входной дверью. Другими словами, данный профиль используется в тех местах, где он испытывает только изгибающие усилия.
Ниже представлен калькулятор, который как раз и может произвести расчет прямоугольной трубы на прогиб и изгиб. Иначе говоря, он может подобрать нужный профиль в зависимости от максимального изгибающего момента, приходящегося на балку, или максимально возможного прогиба, который вы установите самостоятельно или в соответствии со СНиП «Нагрузки и воздействия». Сам подбор можно одновременно осуществить для труб по двум стандартам: ГОСТ 8645-68 и 30245-2003.
Рассчитать прямоугольную трубу можно для шести схем загружения (см. рисунок). Три из них — это балки с равномерно распределенными нагрузками, а остальные — с одной и двумя сосредоточенными силами.
svoydomtoday.ru
Расчет металлической перемычки
Какой дом не обходится без перемычек? Правильно — никакой! Поэтому если Вы собираетесь строить дом, то Вам может пригодится данный калькулятор. Ведь благодаря ему Вы можете легко произвести расчет любой металлической перемычки (из уголков, швеллера двутавра, трубы и т.д.), которая в будущем будет удерживать конструкции, находящиеся над дверными и оконными проемами.
Если же Вас интересуют монолитные железобетонные перемычки или перемычки, выполненные непосредственно из уголков, то Вам нужно воспользоваться другими калькуляторами.
Подробнее о калькуляторе. Он способен рассчитать требуемый момент сопротивления (Wтреб) и требуемый момент инерции ( Jтреб), по которым Вы уже подбираете профиль под перемычку.
Для удобства калькулятор имеет 4 режима, в которые заведены наиболее распространенные условия эксплуатации перемычек (типы нагрузок):
- Тип 1 — перемычка несущей стены с опирающимися на нее плитами перекрытия.
- Тип 2 — перемычка несущей стены с опирающейся на нее балкой перекрытия.
- Тип 3 — перемычка несущей стены, на которую помимо элементов стены опираются еще и две балки перекрытия.
- Тип 4 — перемычка самонесущей стены или перегородки.
Калькуляторы по теме:
Инструкция к калькулятору
Перед тем, как приступить к расчету внимательно ознакомьтесь с инструкцией во избежания ошибок.
Исходные данные
Тип 1
Длина пролета (L) — расстояние между краями опор над проемом, который перекрывает металлическая перемычка.
Ширина кладки (В) — данная величина зависит от того, какой вариант ваш (см. рисунок):
- Вариант 1 — перемычка воспринимает нагрузку от всей толщины стены.
- Вариант 2 — перемычка воспринимает нагрузку от части стены, например, только от облицовочного кирпича.
Материал кладки — здесь Вы выбираете материал, из которого сделана стена. В случае же, если его не нашлось или Вы используете материал с другой плотностью (так как такие материалы, как пенобетон, керамзитобетон, газосиликат в расчете заведены с максимальными плотностями, т.е. самые тяжелые), то можно выбрать плотность материалов из предложенных.
Сокращения:
с. пуст. — силикатный пустотелый.
с. полн. — силикатный полнотелый.
к. пуст. — керамический пустотелый.
к. полн. — керамический полнотелый.
керам. бетон — керамзитобетон.
Высота кладки (Н) — здесь нужно быть особенно внимательным. Итак, существует 2 случая (см. рисунок):
- Случай 1 — когда расстояние между проемами по высоте больше, чем пол пролета, т.е. H>L/2, или над проемом никаких проемов больше нет. В этом случае графа «Н» остается пустой или там ставится цифра 0.
- Случай 2 — расстояние между проемами меньше, чем пол пролета, H
Расчетное сопротивление Ry — обычно для расчетов используется 210 МПа. Но если Вы уверены, что Вам поставят профиль из стали именно той марки, которой нужно, то данная величина ставится по схеме:
- марка стали С255 — Ry = 250 МПа.
- марка стали С345 — Ry = 340 МПа.
Нагрузка от плит перекрытия (q2) — нагрузка, которая передается от вышележащих плит перекрытия на перемычку (через кладку или непосредственно на нее).
Тип 2
Дальше будет рассказываться только о новых переменных.
Нагрузка от балки перекрытия (Q) — нагрузка, возникающая на опоре балки перекрытия и которая передается на перемычку.
Тип 3
Расстояния (А и С) — расстояния от края опор до место приложения нагрузок от балок.
Результат
Fmax — максимально допустимый прогиб для перемычек по СНиП 2.01.07-85* (СП 20.13330.2011). «Нагрузки и воздействия».
Wтреб и Jтреб — требуемые момент сопротивления и момент инерция для профиля, который будет использоваться в качестве металлической перемычки. Подбираются по сортаментам так, чтобы значения W и J профиля были больше, чем Wтреб и Jтреб. Также при подборе профиля следует учитывать его ориентацию в пространстве.
Пример подбора профиля для металлической перемычки.
В качестве перемычки будет использоваться неравнополочный уголок по ГОСТ 8510-86. Получаемые значения по расчету Wтреб = 0,61 см3, Jтреб =1,90 см4. И так как мы подбираем профиль по прогибу, то ориентируемся на Jтреб. Ближайшее большее значение по направлению Х у уголка L32х20х4 с Jx = 1,93 см4, по направлению Y — L40x30x4 с Jy = 2,01 см4.
svoydomtoday.ru
Растяжение сжатие подобрать уголок
⇐ ПредыдущаяСтр 12 из 13Следующая ⇒
Предельное состояние растянутых элементов определяется их разрывом , где — временное сопротивление стали, или развитием чрезмерных пластических деформаций , где — предел текучести стали.
Стали с нормативным пределом текучести кН/см² имеют развитую площадку текучести (см. гл.1), поэтому несущая способность элементов из таких сталей проверяется по формуле
(9.7)
где — площадь сечения нетто.
Для элементов, выполненных из сталей, не имеющих площадку текучести (условный предел текучести Ơ02 > 44кН/см²), а также, если эксплуатация конструкции возможна и после развития пластических деформаций, несущая способность проверяется по формуле:
(9.8)
где — расчетное сопротивление, определенное по временному сопротивлению;
— коэффициент надежности при расчете по временному сопротивлению.
В практике проектирования расчет растянутых элементов проводится по формуле (9.7).
При проверке растянутого элемента, когда несущая способность определяется напряжениями, возникающими в наиболее ослабленном сечении (например, отверстиями для болтов), необходимо учитывать возможные ослабления и принимать площадь нетто.
Требуемая площадь нетто растянутого элемента определяется по формуле
(9.9)
Затем по сортаменту выбирают профиль, имеющий ближайшее большее значение площади.
Пример 9.2. Требуется подобрать сечение растянутого раскоса фермы по расчетному усилию N
=535кН. Материал сталь – сталь С245; Ry
= 24кН/см2;
γс
= 0,95
Требуемая площадь сечения Атр
= 535/(24 . Сечение не ослаблено отверстиями.
Принимаем два равнополочных уголка 90×7; А
= 12,3 = 24,6см2 > Атр
.
9.11. Подбор сечения элементов ферм, работающих на действие продольной силы и изгиб (внецентренное растяжение и сжатие)
Предельное состояние внецентренно растянутых элементов определяется чрезмерным развитием пластических деформаций в наиболее нагруженном состоянии. Их несущая способность определяется по формуле (см. гл.2).
(9.10)
Пример 9.3.Подобрать сечение растянутого нижнего пояса при действии на него внеузловой нагрузки в середине длины панели (рис.9.13,а
) F=10кН. Осевое усилие в поясе N=800кН. Расстояние между центрами узлов d=3м. Материал конструкции – сталь С245;Ry=24кН/см2. Коэффициент условий работы γс=0,95.
Рис. 9.13. К примеру 9.3 и 9.4
Подбираем сечение элемента из условия его работы на растяжение по формуле (9.9); Aтр=800/( 24 = 35,1см2.
Принимаем сечение из двух уголков 125х9; А=22 =44см2; моменты сопротивления для обушка Wобx и пера Wпx равны:
Wобx = 327 /3,4 = 192,4 см2; Wпx =327 /(12,5 – 3,4) = 72 см2
Момент с учетом неразрезности пояса М = ( Fd / 4)0.9 = ( 10 /4 )0.9 = 675 кН см.
Проверка несущей способности пояса: по табл.5 приложения для сечения из двух уголков n = 1, c = 1.6.
Пол формуле (9.10) для растянутого волокна (по обушку)
Что такое сечение проводника?
Сечение проводника — это площадь поперечного среза проводника, измеряемая в квадратных миллиметрах (мм²) или других подходящих единицах измерения. Сечение проводника определяет его способность проводить электрический ток и сопротивление потери энергии в виде тепла.
Чем больше сечение проводника, тем больше ток он может переносить без перегрева. Поэтому выбор правильного сечения проводника важен для обеспечения безопасности и эффективности электрической системы.
Обычно в бытовых и промышленных электрических системах используются проводники с разными сечениями в зависимости от потребляемой мощности устройств и длины проводов. Большие сечения используются для подачи электроэнергии на большие расстояния или для мощных потребителей, таких как электрические плиты, водонагреватели и т.д. Меньшие сечения могут использоваться для слаботочных систем или устройств с небольшим потреблением энергии.
Правильный выбор сечения проводника также зависит от норм и стандартов электробезопасности, которые могут различаться в разных странах. Неверный выбор сечения проводника может привести к перегреву, потере эффективности и даже пожару. Поэтому перед проведением работ с электропроводкой важно консультироваться с профессионалами и соблюдать действующие стандарты и нормативы.